MA240 Online Exam 5_08 SCORE 95 PERCENT

Question 1 of 40

5.0 Points

Use properties of logarithms to expand the following logarithmic expression as much as possible.
 
Log
b (√xy/ z3)

  •  A. 1/2 logx - 6 logy + 3 logz
  •  B. 1/2 logb x - 9 logb y - 3 logb z
  •  C. 1/2 logb x + 3 logb y + 6 logb z
  •  D. 1/2 logb x + 3 logb y - 3 logb z

 

Question 2 of 40

5.0 Points

Use properties of logarithms to condense the following logarithmic expression. Write the expression as a single logarithm whose coefficient is 1.

log
2 96 – log2 3

  •  A. 5
  •  B. 7
  •  C. 12
  •  D. 4

 

Question 3 of 40

5.0 Points

Write the following equation in its equivalent logarithmic form.

2
-4 = 1/16

  •  A. Log4 1/16 = 64
  •  B. Log2 1/24 = -4
  •  C. Log2 1/16 = -4
  •  D. Log4 1/16 = 54

 

Question 4 of 40

5.0 Points

Write the following equation in its equivalent exponential form.
 
4 = log
2 16

  •  A. 2 log4 = 16
  •  B. 22 = 4
  •  C. 44 = 256
  •  D. 24 = 16

Question 5 of 40

5.0 Points

Approximate the following using a calculator; round your answer to three decimal places.

3
√5

  •  A. .765
  •  B. 14297
  •  C. 11.494
  •  D. 11.665

 

Question 6 of 40

5.0 Points

The graph of the exponential function f with base b approaches, but does not touch, the __________-axis. This axis, whose equation is __________, is a __________ asymptote.

  •  A. x; y = 0; horizontal
  •  B. x; y = 1; vertical
  •  C. -x; y = 0; horizontal
  •  D. x; y = -1; vertical

 

Question 7 of 40

5.0 Points

Evaluate the following expression without using a calculator.

8
log8 19

  •  A. 17
  •  B. 38
  •  C. 24
  •  D. 19

 

Question 8 of 40

5.0 Points

Approximate the following using a calculator; round your answer to three decimal places. 

e
-0.95

  •  A. .483
  •  B. 1.287
  •  C. .597
  •  D. .387

 

Question 9 of 40

5.0 Points

The half-life of the radioactive element krypton-91 is 10 seconds. If 16 grams of krypton-91 are initially present, how many grams are present after 10 seconds? 20 seconds?

  •  A. 10 grams after 10 seconds; 6 grams after 20 seconds
  •  B. 12 grams after 10 seconds; 7 grams after 20 seconds
  •  C. 4 grams after 10 seconds; 1 gram after 20 seconds
  •  D. 8 grams after 10 seconds; 4 grams after 20 seconds

 

Question 10 of 40

5.0 Points

Solve the following logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, to two decimal places, for the solution.

2 log x = log 25

  •  A. {12}
  •  B. {5}
  •  C. {-3}
  •  D. {25}

 

Question 11 of 40

5.0 Points

An artifact originally had 16 grams of carbon-14 present. The decay model A = 16e -0.000121t describes the amount of carbon-14 present after t years. How many grams of carbon-14 will be present in 5715 years?

  •  A. Approximately 7 grams
  •  B. Approximately 8 grams
  •  C. Approximately 23 grams
  •  D. Approximately 4 grams

 

Question 12 of 40

5.0 Points

Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents.

3
1-x = 1/27

  •  A. {2}
  •  B. {-7}
  •  C. {4}
  •  D. {3}

 

Question 13 of 40

5.0 Points

Find the domain of following logarithmic function.

f(x) = ln (x - 2)
2

  •  A. (∞, 2) (-2, -∞)  Incorrect
  •  B. (-∞, 2) (2, ∞)
  •  C. (-∞, 1) (3, ∞)
  •  D. (2, -∞) (2, ∞)

 

Question 14 of 40

5.0 Points

You have $10,000 to invest. One bank pays 5% interest compounded quarterly and a second bank pays 4.5% interest compounded monthly. Use the formula for compound interest to write a function for the balance in each bank at any time t.

  •  A. A = 20,000(1 + (0.06/4))4t; A = 10,000(1 + (0.044/14))12t
  •  B. A = 15,000(1 + (0.07/4))4t; A = 10,000(1 + (0.025/12))12t
  •  C. A = 10,000(1 + (0.05/4))4t; A = 10,000(1 + (0.045/12))12t
  •  D. A = 25,000(1 + (0.05/4))4t; A = 10,000(1 + (0.032/14))12t

 

Question 15 of 40

5.0 Points

Use the exponential growth model, A = A0ekt, to show that the time it takes a population to double (to grow from A0 to 2A0 ) is given by t = ln 2/k.

  •  A. A0 = A0ekt; ln = ekt; ln 2 = ln ekt; ln 2 = kt; ln 2/k = t
  •  B. 2A0 = A0e; 2= ekt; ln = ln ekt; ln 2 = kt; ln 2/k = t
  •  C. 2A0 = A0ekt; 2= ekt; ln 2 = ln ekt; ln 2 = kt; ln 2/k = t
  •  D. 2A0 = A0ekt; 2 = ekt; ln 1 = ln ekt; ln 2 = kt; ln 2/k = toe

 

Question 16 of 40

5.0 Points

Find the domain of following logarithmic function.

f(x) = log (2 - x)

  •  A. (∞, 4)
  •  B. (∞, -12)
  •  C. (-∞, 2)
  •  D. (-∞, -3)

 

Question 17 of 40

5.0 Points

Consider the model for exponential growth or decay given by A = A0ekt. If k __________, the function models the amount, or size, of a growing entity. If k __________, the function models the amount, or size, of a decaying entity.

  •  A. > 0; < 0
  •  B. = 0; ≠ 0
  •  C. ≥ 0; < 0
  •  D. < 0; ≤ 0

 

Question 18 of 40

5.0 Points

Write the following equation in its equivalent exponential form.
 
log
6 216 = y

  •  A. 6y = 216
  •  B. 6x = 216
  •  C. 6logy = 224
  •  D. 6xy = 232

 

Question 19 of 40

5.0 Points

Use properties of logarithms to condense the following logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. 

log x + 3 log y

  •  A. log (xy)
  •  B. log (xy3)
  •  C. log (xy2)
  •  D. logy (xy)3

 

Question 20 of 40

5.0 Points

Solve the following exponential equation. Express the solution set in terms of natural logarithms or common logarithms to a decimal approximation, of two decimal places, for the solution.

3
2x + 3x - 2 = 0

  •  A. {1}
  •  B. {-2}
  •  C. {5}
  •  D. {0}

 

Question 21 of 40

5.0 Points

Let x represent one number and let y represent the other number. Use the given conditions to write a system of equations. Solve the system and find the numbers. 

The sum of two numbers is 7. If one number is subtracted from the other, their difference is -1. Find the numbers.

  •  A. x + y = 7; x - y = -1; 3 and 4
  •  B. x + y = 7; x - y = -1; 5 and 6
  •  C. x + y = 7; x - y = -1; 3 and 6
  •  D. x + y = 7; x - y = -1; 2 and 3

Question 22 of 40

5.0 Points

Solve each equation by either substitution or addition method.

x2 + 4y2 = 20 
x + 2y = 6

 

  •  A. {(5, 2), (-4, 1)}
  •  B. {(4, 2), (3, 1)}
  •  C. {(2, 2), (4, 1)}
  •  D. {(6, 2), (7, 1)}

 

Question 23 of 40

5.0 Points

Solve each equation by the substitution method.

x + y = 1 
x
2 + xy – y2 = -5

 

  •  A. {(4, -3), (-1, 2)}
  •  B. {(2, -3), (-1, 6)}
  •  C. {(-4, -3), (-1, 3)}
  •  D. {(2, -3), (-1, -2)}

 

Question 24 of 40

5.0 Points

Solve each equation by the substitution method.

x2 - 4y2 = -7 
3x
2 + y2 = 31

 

  •  A. {(2, 2), (3, -2), (-1, 2), (-4, -2)}
  •  B. {(7, 2), (3, -2), (-4, 2), (-3, -1)}
  •  C. {(4, 2), (3, -2), (-5, 2), (-2, -2)}
  •  D. {(3, 2), (3, -2), (-3, 2), (-3, -2)}

 

Question 25 of 40

5.0 Points

Perform the long division and write the partial fraction decomposition of the remainder term. 

x
4 – x2 + 2/x3 - x2

  •  A. x + 3 - 2/x - 1/x2 + 4x - 1
  •  B. 2x + 1 - 2/x - 2/x + 2/x + 1
  •  C. 2x + 1 - 2/x2 - 2/x + 5/x - 1
  •  D. x + 1 - 2/x - 2/x2 + 2/x - 1

 

Question 26 of 40

5.0 Points

Solve the following system.

2x + 4y + 3z = 2 
x + 2y - z = 0 
4x + y - z = 6

 

  •  A. {(-3, 2, 6)}
  •  B. {(4, 8, -3)}
  •  C. {(3, 1, 5)}
  •  D. {(1, 4, -1)}

 

Question 27 of 40

5.0 Points

Write the partial fraction decomposition for the following rational expression. 

x
2 – 6x + 3/(x – 2)3

  •  A. 1/x – 4 – 2/(x – 2)2 – 6/(x – 2)
  •  B. 1/x – 2 – 4/(x – 2)2 – 5/(x – 1)3
  •  C. 1/x – 3 – 2/(x – 3)2 – 5/(x – 2)
  •  D. 1/x – 2 – 2/(x – 2)2 – 5/(x – 2)3

 

Question 28 of 40

5.0 Points

Write the partial fraction decomposition for the following rational expression.
 
x + 4/x
2(x + 4)

  •  A. 1/3x + 1/x2 - x + 5/4(x2 + 4) Incorrect
  •  B. 1/5x + 1/x2 - x + 4/4(x2 + 6)
  •  C. 1/4x + 1/x2 - x + 4/4(x2 + 4)
  •  D. 1/3x + 1/x2 - x + 3/4(x2 + 5)

 

Question 29 of 40

5.0 Points

On your next vacation, you will divide lodging between large resorts and small inns. Let x represent the number of nights spent in large resorts. Let y represent the number of nights spent in small inns. 

Write a system of inequalities that models the following conditions: 

You want to stay at least 5 nights. At least one night should be spent at a large resort. Large resorts average $200 per night and small inns average $100 per night. Your budget permits no more than $700 for lodging.

 A. 

y ≥ 1 
x + y ≥ 5
x ≥ 1 
300x + 200y ≤ 700

  •  

B. 

y ≥ 0
x + y ≥ 3 
x ≥ 0 
200x + 200y ≤ 700

  •  

C. 

y ≥ 1
x + y ≥ 4
x ≥ 2 
500x + 100y ≤ 700

  •  

D. 

y ≥ 0
x + y ≥ 5
x ≥ 1 
200x + 100y ≤ 700

 

Question 30 of 40

5.0 Points

A television manufacturer makes rear-projection and plasma televisions. The profit per unit is $125 for the rear-projection televisions and $200 for the plasma televisions. 

Let x = the number of rear-projection televisions manufactured in a month and let y = the number of plasma televisions manufactured in a month. Write the objective function that models the total monthly profit.

  •  A. z = 200x + 125y
  •  B. z = 125x + 200y
  •  C. z = 130x + 225y
  •  D. z = -125x + 200y

 

Question 31 of 40

5.0 Points

Write the form of the partial fraction decomposition of the rational expression. 
7x - 4/x
2 - x - 12

  •  A. 24/7(x - 2) + 26/7(x + 5)
  •  B. 14/7(x - 3) + 20/7(x2 + 3)
  •  C. 24/7(x - 4) + 25/7(x + 3)
  •  D. 22/8(x - 2) + 25/6(x + 4)

 

Question 32 of 40

5.0 Points

Find the quadratic function y = ax2 + bx + c whose graph passes through the given points.

(-1, 6), (1, 4), (2, 9)

  •  A. y = 2x2 - x + 3
  •  B. y = 2x2 + x2 + 9
  •  C. y = 3x2 - x - 4
  •  D. y = 2x2 + 2x + 4

 

Question 33 of 40

5.0 Points

Solve each equation by the addition method.

x2 + y2 = 25 
(x - 8)
2 + y2 = 41

 

  •  A. {(3, 5), (3, -2)}
  •  B. {(3, 4), (3, -4)}
  •  C. {(2, 4), (1, -4)}
  •  D. {(3, 6), (3, -7)}

 

Question 34 of 40

5.0 Points

Perform the long division and write the partial fraction decomposition of the remainder term. 

x
5 + 2/x2 - 1

  •  A. x2 + x - 1/2(x + 1) + 4/2(x - 1)
  •  B. x3 + x - 1/2(x + 1) + 3/2(x - 1)
  •  C. x3 + x - 1/6(x - 2) + 3/2(x + 1)
  • D. x2 + x - 1/2(x + 1) + 4/2(x - 1)

 

Question 35 of 40

5.0 Points

Write the partial fraction decomposition for the following rational expression.
 
ax +b/(x – c)
2 (c ≠ 0)

  •  A. a/a – c +ac + b/(x – c)2
  •  B. a/b – c +ac + b/(x – c)
  •  C. a/a – b +ac + c/(x – c)2
  •  D. a/a – b +ac + b/(x – c)

 

Question 36 of 40

5.0 Points

Find the quadratic function y = ax2 + bx + c whose graph passes through the given points.

(-1, -4), (1, -2), (2, 5)

  •  A. y = 2x2 + x - 6
  •  B. y = 2x2 + 2x - 4
  •  C. y = 2x2 + 2x + 3
  •  D. y = 2x2 + x - 5

 

Question 37 of 40

5.0 Points

Solve the following system by the substitution method.

{x + y = 4 
{y = 3x

  •  A. {(1, 4)}
  •  B. {(3, 3)}
  •  C. {(1, 3)}
  •  D. {(6, 1)}

 

Question 38 of 40

5.0 Points

Many elevators have a capacity of 2000 pounds. 

If a child averages 50 pounds and an adult 150 pounds, write an inequality that describes when x children and y adults will cause the elevator to be overloaded.

  •  A. 50x + 150y > 2000
  •  B. 100x + 150y > 1000
  •  C. 70x + 250y > 2000
  •  D. 55x + 150y > 3000

 

Question 39 of 40

5.0 Points

Solve the following system by the substitution method.

{x + 3y = 8 
{y = 2x - 9

  •  A. {(5, 1)}
  •  B. {(4, 3)}
  •  C. {(7, 2)}
  •  D. {(4, 3)}

 

Question 40 of 40

5.0 Points

Solve the following system.

x = y + 4 
3x + 7y = -18

 

  •  A. {(2, -1)}
  •  B. {(1, 4)}
  •  C. {(2, -5)}
  •  D. {(1, -3)}
   



Virus-free. www.avast.com